二进制转十进制在线

\(1101.01(2)=1 \times 2^0+0 \times 2^1+1 \times 2^2+1 \times 2^3 +0 \times 2^{-1}+1 \times 2^{-2}=1+0+4+8+0+0.25=13.25\)

所以总结起来通用公式为:

\(abcd.efg(2)=d \times 2^0+c \times 2^1+b \times 2^2+a \times 2^3+e \times 2^{-1}+f \times 2^{-2}+g \times 2^{-3}\)

或者用下面这种方法:

把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。

十进制转换二进制

采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

16进制十进制112233445566778899a10b11c12d13e14f1510161117121813191420152116221723182419251a261b271c281d291e301f3120322133223423352436253726382739284029412a422b432c442d452e462f4730483149325016进制十进制33513452355336543755385639573a583b593c603d613e623f6340644165426643674468456946704771487249734a744b754c764d774e784f7950805181528253835484558556865787588859895a905b915c925d935e945f95609661976298639964100

在线进制转换器提供了二进制,八进制,十进制,十六进制等相互转换功能。如:

常见进位制及其用途

底/基数名称描述10十进制世界上最常见的算术运算位进制系统,它是2和5的乘积,用于大多数机械计数器。其十位数字为 “0-9”。12十二进制因为有多个约数如2,3,4和6的易于整除性,它传统上用以表示数量和总数,如一打即为十二个单位。十二位数字为“0-9”,接着是“A”和“B”。20二十进制因为有多个约数如2,4,5和10的易于整除性,在几种传统文化中的数字系统,仍然被用于计数。二十位数字为“0-9”,接着是“A-J”。2二进制几乎所有的电子计算机内部都使用二进位制,分别为“0”和“1”表示“关”和“开”。用于大多数电子计数器。16十六进制经常用于计算机领域,2到4次幂。十六位数字为“0-9”,接着是“A-F”。8八进制偶尔用于计算机领域,2到3次幂。八位数字为“0-7”。60六十进制起源于古代苏美尔并传给巴比伦人。六十成为3,4和5的乘积。今天用作现代圆形坐标系(度,分,秒)和时间测量(小时,分钟和秒)的基础。5五进制一般用于计算票数,“T”代表2,“正”代表5。正字一笔等于一。

基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字。

  • 二进制基数是 0 和 1
  • 八进制基数是 0-7
  • 十进制基数是 0-9
  • 十六进制基数是 0-9+A-F(大小写均可)

二、八、十、十六进制基数对照表

二进制转十进制在线

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

中文名二进制类 别算法外文名binary system属 性数学

十进制是我们生活、工作、学习等场合使用最频繁的一种进制,我们从幼儿园就开始学习十进制。

其实这都是全世界通用的十进制,即1.满十进一,满二十进二,以此类推……2.按权展开,第一位权为10^0,第二位10^1……以此类推,第N位10^(N-1),该数的数值等于每位位的数值*该位对应的权值之和。

十进制的起源

人类算数采用十进制,可能跟人类有十根手指有关。亚里士多德称人类普遍使用十进制,只不过是绝大多数人生来就有10根手指这样一个解剖学事实的结果。实际上,在古代世界独立开发的有文字的记数体系中,除了巴比伦文明的楔形数字为60进制,玛雅数字为20进制外,几乎全部为十进制。只不过,这些十进制记数体系并不是按位的。

在计算数学方面,中国大约在商周时期已经有了四则运算,到春秋战国时期整数和分数的四则运算已相当完备。其中,出现于春秋时期的正整数乘法歌诀“九九歌”,堪称是先进的十进位记数法与简明的中国语言文字相结合之结晶,这是任何其它记数法和语言文字所无法产生的。从此,“九九歌”成为数学的普及和发展最基本的基础之一,一直延续至今。其变化只是古代的“九九歌”从“九九八十一”开始,到“二二如四”止,而现在是由“一一如一”到“九九八十一”。

《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。

十进制与度量衡

中国十进制度量衡有久远的历史。公元前6世纪的一把周朝尺刻有十分之一的寸和百分之一的分。

传统度量衡不是完全使用十进制,例如1斤等于16两、1呎等于12吋等。公制完全使用十进制,使换算较直接。中华民国政府于1920年代推行市制以与公制接轨。1980年代香港政府便曾大力宣传十进制的好处,当时有口号如“采用十进制,公道又易计”或“十进制,好易计”等,但民间至今仍常用旧制、英制等非十进制换算。

十进制计数法是相对二进制计数法而言的,是我们日常使用最多的计数方法(俗称“逢十进一”),它的定义是:“每相邻的两个计数单位之间的进率都为十”的计数法则,就叫做“十进制计数法”。

十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例:

例:将十进制的168转换为二进制

得出结果 将十进制的168转换为二进制,(10101000)

分析:

  • 第一步,将168除以2,商84,余数为0。

  • 第二步,将商84除以2,商42余数为0。

  • 第三步,将商42除以2,商21余数为0。

  • 第四步,将商21除以2,商10余数为1。

  • 第五步,将商10除以2,商5余数为0。

  • 第六步,将商5除以2,商2余数为1。

  • 第七步,将商2除以2,商1余数为0。

  • 第八步,将商1除以2,商0余数为1。

  • 第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000

2.小数部分

方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分

为零为止。如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。换句话说就是0舍1入。读数要从前面的整数读到后面的整数,下面举例:

例1:将0.125换算为二进制

得出结果:将0.125换算为二进制(0.001)

分析:

  • 第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25。

  • 第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5。

  • 第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0。

  • 第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2:将0.45转换为二进制(保留到小数点第四位)

大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。

那么,我们可以得出结果将0.45转换为二进制约等于0.0111

上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:

  • 十进制转换为二进制,需要分成整数和小数两个部分分别转换。

  • 当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法。

  • 注意他们的读数方向。

因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111。

3. 二进制转换为十进制 不分整数和小数部分

方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数。例

将二进制数101.101转换为十进制数。

得出结果:(101.101)2=(5.625)10

大家在做二进制转换成十进制需要注意的是:

首先,我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这

关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。

接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。现在我们来练习二进制与八进制之间的转换。

(1) 二进制转换为八进制

方法:取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。例

1.将二进制数101110.101转换为八进制

得到结果:将101110.101转换为八进制为56.5

2.将二进制数1101.1转换为八进制

得到结果:将1101.1转换为八进制为15.4

(2) 将八进制转换为二进制

方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。例:

1.将八进制数67.54转换为二进制

因此,将八进制数67.54转换为二进制数为110111.101100,即110111.1011

大家从上面这道题可以看出,计算八进制转换为二进制

首先,将八进制按照从左到右,每位展开为三位,小数点位置不变

然后,按每位展开为22,21,20(即4、2、1)三位去做凑数,即a×22+ b×21 +c×20=该位上的数(a=1或者a=0,b=1或者b=0,c=1或者c=0),将abc排列就是该位的二进制数

接着,将每位上转换成二进制数按顺序排列

最后,就得到了八进制转换成二进制的数字。

以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是:

1) 他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换

2) 大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边(即整数的最高位和小数的最低位)才能添0或者去0,否则将产生错误

方法:与二进制与八进制转换相似,只不过是一位(十六)与四位(二进制)的转换,下面具体讲解

(1) 二进制转换为十六进制

方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数。如果向左(向右)取四位后,取到最高(最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足四位。

1.例:将二进制11101001.1011转换为十六进制

得到结果:将二进制11101001.1011转换为十六进制为E9.B

2.例:将101011.101转换为十六进制

因此得到结果:将二进制101011.101转换为十六进制为2B.A

(2)将十六进制转换为二进制

方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧。

1.将十六进制6E.2转换为二进制数

因此得到结果:将十六进制6E.2转换为二进制为01101110.0010即110110.001

方法:一般不能互相直接转换,一般是将八进制(或十六进制)转换为二进制,然后再将二进制转换为十六进制(或八进制),小数点位置不变。那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转

(1)八进制转换为十进制

方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数。

例:1.将八进制数67.35转换为十进制

(2)十进制转换为八进制

十进制转换成八进制有两种方法:

1)间接法:先将十进制转换成二进制,然后将二进制又转换成八进制

2)直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:

1.整数部分

方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。

2.小数部分

方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8,一直取到小数部分为零为止。如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入。