Hypoxic ischemic encephalopathy 中文

1. Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol. 2011;2011:609813. [PMC free article] [PubMed] [Google Scholar]

2. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–338. doi: 10.1016/j.earlhumdev.2010.05.010. [PubMed] [CrossRef] [Google Scholar]

4. James A, Patel V. Hypoxic ischaemic encephalopathy. Paediatr Child Health. 2014;24(9):385–389. doi: 10.1016/j.paed.2014.02.003. [CrossRef] [Google Scholar]

5. Saliba E, Fakhri N, Debillon T. Establishing a hypothermia service for infants with suspected hypoxic-ischemic encephalopathy. Semin Fetal Neonatal Med. 2015;20(2):80–86. doi: 10.1016/j.siny.2015.01.008. [PubMed] [CrossRef] [Google Scholar]

6. Wu Q, Chen W, Sinha B, et al. Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov Today. 2015;20(11):1372–1381. doi: 10.1016/j.drudis.2015.09.001. [PubMed] [CrossRef] [Google Scholar]

7. Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta. 2015;450:282–297. doi: 10.1016/j.cca.2015.08.021. [PubMed] [CrossRef] [Google Scholar]

8. Mckenna MC, Dienel GA, Sonnewald U, et al. Energy metabolism of the brain[M]//Siegel GJ, Albers RW, Price DL. Basic neurochemistry. 8 th ed. New York: Academic Press, 2012: 200-231.

9. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism:focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–738. doi: 10.1016/j.cmet.2011.08.016. [PubMed] [CrossRef] [Google Scholar]

10. Drury PP, Bennet L, Gunn AJ. Mechanisms of hypothermic neuroprotection. Semin Fetal Neonatal Med. 2010;15(5):287–292. doi: 10.1016/j.siny.2010.05.005. [PubMed] [CrossRef] [Google Scholar]

12. Dickinson H, Ellery S, Ireland Z, et al. Creatine supplementation during pregnancy:summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150. doi: 10.1186/1471-2393-14-150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Perlman JM, Wyllie J, Kattwinkel J, et al. Part 7:Neonatal resuscitation:2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132(16 Suppl 1):S204–S241. doi: 10.1161/CIR.0000000000000276. [PubMed] [CrossRef] [Google Scholar]

15. Trays G, Banerjee S. Fetal and neonatal hyperthermia. Paediatr Child Health. 2014;24(9):419–423. doi: 10.1016/j.paed.2014.01.005. [CrossRef] [Google Scholar]

17. Sarkar S, Barks JD. Systemic complications and hypothermia. Semin Fetal Neonatal Med. 2010;15(5):270–275. doi: 10.1016/j.siny.2010.02.001. [PubMed] [CrossRef] [Google Scholar]

18. Robertson NJ, Tan S, Groenendaal F, et al. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr. 2012;160(4):544–552. doi: 10.1016/j.jpeds.2011.12.052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Broad KD, Fierens I, Fleiss B, et al. Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis. 2016;87:29–38. doi: 10.1016/j.nbd.2015.12.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Loetscher PD, Rossaint J, Rossaint R, et al. Argon:neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care. 2009;13(6):R206. doi: 10.1186/cc8214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Mlody B, Lorenz C, Inak G, et al. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Semin Cell Dev Biol. 2016;52:102–109. doi: 10.1016/j.semcdb.2016.02.018. [PubMed] [CrossRef] [Google Scholar]

23. Shulman RG, Rothman DL, Behar KL, et al. Energetic basis of brain activity:implications for neuroimaging. Trends Neurosci. 2004;27(8):489–495. doi: 10.1016/j.tins.2004.06.005. [PubMed] [CrossRef] [Google Scholar]

24. Ellery SJ, Dickinson H, McKenzie M, et al. Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy-Creatine prophylaxis and the need for multi-organ protection. Neurochem Int. 2016;95:15–23. doi: 10.1016/j.neuint.2015.11.002. [PubMed] [CrossRef] [Google Scholar]

25. Allah Yar R, Akbar A, Iqbal F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res. 2015;1595:92–100. doi: 10.1016/j.brainres.2014.11.017. [PubMed] [CrossRef] [Google Scholar]

26. Iqbal S, Ali M, Iqbal F. Long term creatine monohydrate supplementation, following neonatal hypoxic ischemic insult, improves neuromuscular coordination and spatial learning in male albino mouse. Brain Res. 2015;1603:76–83. doi: 10.1016/j.brainres.2014.10.006. [PubMed] [CrossRef] [Google Scholar]

27. Iqbal S, Ali M, Akbar A, et al. Effects of dietary creatine supplementation for 8 weeks on neuromuscular coordination and learning in male albino mouse following neonatal hypoxic ischemic insult. Neurol Sci. 2015;36(5):765–770. doi: 10.1007/s10072-014-2041-9. [PubMed] [CrossRef] [Google Scholar]

28. Ellery SJ, LaRosa DA, Kett MM, et al. Maternal creatine homeostasis is altered during gestation in the spiny mouse:is this a metabolic adaptation to pregnancy? BMC Pregnancy Childbirth. 2015;15:92. doi: 10.1186/s12884-015-0524-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Ireland Z, Castillo-Melendez M, Dickinson H, et al. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience. 2011;194:372–379. doi: 10.1016/j.neuroscience.2011.05.012. [PubMed] [CrossRef] [Google Scholar]

31. Dickinson H, Ellery S, Ireland Z, et al. Creatine supplementation during pregnancy:summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150. doi: 10.1186/1471-2393-14-150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Dolder M, Walzel B, Speer O, et al. Inhibition of the mitochondrial permeability transition by creatine kinase substrates. J Biol Chem. 2003;278(20):17760–17766. doi: 10.1074/jbc.M208705200. [PubMed] [CrossRef] [Google Scholar]

33. Meyer LE, Machado LB, Santiago AP, et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation:antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem. 2006;281(49):37361–37371. doi: 10.1074/jbc.M604123200. [PubMed] [CrossRef] [Google Scholar]

34. Guidi C, Potenza L, Sestili P, et al. Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. Biochim Biophys Acta. 2008;1780(1):16–26. doi: 10.1016/j.bbagen.2007.09.018. [PubMed] [CrossRef] [Google Scholar]

35. Turner CE, Byblow WD, Gant N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci. 2015;35(4):1773–1780. doi: 10.1523/JNEUROSCI.3113-14.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Sartini S, Lattanzi D, Ambrogini P, et al. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring. Neuroscience. 2016;312:120–129. doi: 10.1016/j.neuroscience.2015.11.017. [PubMed] [CrossRef] [Google Scholar]

37. Andres RH, Ducray AD, Schlattner U, et al. Functions and effects of creatine in the central nervous system. Brain Res Bull. 2008;76(4):329–343. doi: 10.1016/j.brainresbull.2008.02.035. [PubMed] [CrossRef] [Google Scholar]

38. Poortmans J, Francaux M. Adverse effects of creatine supplementation:fact or fiction? Sports Med. 2000;30(3):155–170. doi: 10.2165/00007256-200030030-00002. [PubMed] [CrossRef] [Google Scholar]

40. EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles:biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. doi: 10.1038/nrd3978. [PubMed] [CrossRef] [Google Scholar]

41. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. [PubMed] [CrossRef] [Google Scholar]

42. Zappulli V, Friis KP, Fitzpatrick Z, et al. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest. 2016;126(4):1198–1207. doi: 10.1172/JCI81134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Baulch JE, Acharya MM, Allen BD, et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc Natl Acad Sci U S A. 2016;113(17):4836–4841. doi: 10.1073/pnas.1521668113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Ophelders DR, Wolfs TG, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med. 2016;5(6):754–763. doi: 10.5966/sctm.2015-0197. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cellderived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–312. doi: 10.1016/j.scr.2013.01.002. [PubMed] [CrossRef] [Google Scholar]

46. Lindoso RS, Collino F, Bruno S, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cells Dev. 2014;23(15):1809–1819. doi: 10.1089/scd.2013.0618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–1715. doi: 10.1038/jcbfm.2013.152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–867. doi: 10.3171/2014.11.JNS14770. [PMC free article] [PubMed] [CrossRef] [Google Scholar]