Ammonia作用

你看過「氨鬼」嗎?在這個示範實驗就看得到。與鬼魂相比,它們既美麗又害羞,只要幾滴醋酸就能嚇走它們。這個示範實驗讓氨透過濾紙向外擴散到含酚酞指示劑的水中,水中微小的水流擾動就能帶著「粉紅幽靈」一起漂浮和旋轉。

示範實驗影片

請按此連結:「粉紅幽靈」—氨在水中的擴散,YouTube。

示範步驟

1. 取一個大燒杯,加自來水至距瓶口3-4公分,再加5 mL酚酞指示劑,攪拌後靜置3-5分鐘使水溶液靜止而不發生擾動。

2. 在小燒杯中置入一些鉛粒(或小卵石、硬幣),並加入20-25 mL稀氨水(約3 M)。

3. 以圓形濾紙覆蓋小燒杯的杯口,並用橡皮圈綁緊,剪去周圍多餘的濾紙。

4. 以滴管吸取步驟2的稀醋酸均勻地濕潤濾紙,特別是周邊橡皮圈綁住的裙襬部分,如圖一所示。注意:均勻濕潤即可,不要用過多的醋酸濕潤。再將小燒杯放入大燒杯底部的中央,放入時儘量不要讓大燒杯中的水溶液擾動。

  氨 (NH3) 是一种天然存在的化合物,由一个氮原子和三个氢原子构成,氮原子和三个氢原子之间由共价单键进行结合。氨通常为无色,是大气中最丰富的碱性气体。氨通过土壤固氮细菌和海洋藻类,以及植物、动物和动物粪污的分解作用自然产生。

  数千年来,生物体、土壤和大气之间的氮交换一直处于平衡状态。然而,人类从事的工业活动已经造成氨呈现显著增加趋势,而氨又是氮循环的重要组成部分。这种增加趋势主要来自是肥料中的氨,它是粪肥管理的副产物。氨含量增加可能会产生破坏性环境影响,例如在大气中,氨促成了颗粒物的形成。在地球表面,氨可以泾流形式进入水源,从而降低水质并损害生态系统(例如通过营养物富集)。因此,精确测量氨的含量可以帮助我们了解并缓解对氮循环的人为影响。

  Picarro 设计并生产的两款气体浓度分析仪,能够针对实验室研究应用和现场研究应用来实现氨含量的精确测定。

分析仪

产品测量应用

G2103 气体浓度分析仪

Picarro G2103 气体浓度分析仪可精确实时测量氨 (NH3) 和水汽 (H2O) 。这款分析仪在关键的气体通路中安装了涂层部件,减弱了 NH3 分子粘附到气体通路表面上的倾向,继而改善测量响应时间。

  • 氨 (NH3)
  • 空气质量
  • 大气科学
  • 排放定量
  • 农业与土壤科学

G2508 气体浓度分析仪

Picarro G2508 气体浓度分析仪可同步测量氧化亚氮 (N2O)、甲烷 (CH4)、二氧化碳 (CO2)、氨 (NH3) 和水汽 (H2O) ,灵敏度为十亿分率 (ppb),针对农业与土壤科学、生态学和量化排放应用所产生的漂移可忽略不计。

  • 二氧化碳 (CO2)
  • 甲烷 (CH4)
  • 氧化亚氮 (N2O)
  • 水 (H2O)
  • 氨 (NH3)
  • 排放定量
  • 农业与土壤科学
  • 生态学

G2509 气体浓度分析仪

  Picarro G2509 气体浓度分析仪设计用于畜牧业、粪便处理和肥料研究领域。在这些充满挑战性的环境中,高浓度的环境甲烷和氨气动态变化快,导致难以精确测量氨气和温室气体。

  • 二氧化碳 (CO2)
  • 甲烷 (CH4)
  • 氧化亚氮 (N2O)
  • 氨 (NH3)
  • 水 (H2O)
  • 排放定量
  • 农业与土壤科学
  • 生态学

外围设备

产品测量应用

16 路气体进样系统(Silco版)

The Picarro 16-Port Distribution Manifold provides unparalleled multiport sample-data collection.

  • 氨 (NH3)
  • 氟化氢 (HF)
  • 过氧化氢 (H2O2)
  • 甲醛 (H2CO)
  • 硫化氢 (H2S)
  • 氯化氢 (HCl)
  • 制药

低泄漏隔膜泵

The Low-Leak Diaphragm Pump is an essential part of a closed-loop measurement system.

  • 二氧化碳 (CO2)
  • 甲烷 (CH4)
  • 乙烷 (C2H6)
  • 乙炔 (C2H2)
  • 乙烯 (C2H4)
  • 氧化亚氮 (N2O)
  • 水 (H2O)
  • 氨 (NH3)
  • 二氧化碳同位素 (iCO2)
  • 甲烷同位素 (iCH4)
  • 农业与土壤科学
  • 生态学

封闭系统测量包

Whether you are looking at gas evolution from soils or vegetation, or the incorporation of stable labels into living organisms, our rugged, high-precision analyzers offer unparalleled performance. Picarro’s small cavity design technology has long been the optimal choice for sample-limited studies. Now we have developed a series of turn-key systems especially designed to avoid external contamination.

血液氨(NH3)主要來自體內蛋白質異化作用,及大小腸中的 含氨 物 質 受 細 菌 分 解 。循 環 血 中 的 氨 大 部 分 在 肝 臟 中 經Kreb-Henseleit尿素循環合成尿素,再由腎臟排出;少部分氨被合成Glutamine。肝臟機能嚴重不良時,會造成血液氨增加,並 影 響 酸 鹼 平 衡 及 腦 部 機 能,最 後 導 致 肝 昏 迷(Hepatic coma)。

氨气(Ammonia),是一种无机化合物,化学式为NH3,分子量为17.031,标准状况下,密度 0.771g/L,相对密度0.5971(空气=1.00)。是一种无色、有强烈的刺激气味的气体。氨气能使湿润的红色石蕊试纸变蓝,能在水中产生少量氢氧根离子,呈弱碱性。在常温下加压即可使其液化(临界温度132.4℃,临界压力11.2兆帕,即112.2大气压),沸点-33.5℃,也易被固化成雪状固体,熔点-77.75℃,溶于水、乙醇和乙醚。在高温时会分解成氮气和氢气,有还原作用。有催化剂存在时氨气可被氧化成一氧化氮。氨气常用于制液氮、氨水、硝酸、铵盐和胺类等。氨气可由氮和氢直接合成而制得,能灼伤皮肤、眼睛、呼吸器官的粘膜,人吸入过多,能引起肺肿胀,以至死亡 [1]  。 [12] 

氨气被列入《危险化学品名录》, [9]  并按照《危险化学品安全管理条例》管控。 [10] 

中文名氨气 [11] 外文名Ammonia [11] 别    名氨 [11] 化学式NH3 [4] 分子量17.031 [11] CAS登录号7664-41-7 [11] EINECS登录号231-635-3 [11] 熔    点-77.7 ℃(101 KPa)沸    点-33.5 ℃(101 KPa)水溶性极易溶于水密    度0.771 kg/m³(20℃,101 KPa)外    观无色有刺激性恶臭的气味 [4] 闪    点11ºC安全性描述S26;S7;S45;S36/37/39;S16;S9;S61 [11] 危险性符号F [11] 危险性描述R10;R11;R36/37/38;R39/23/24/25 [11] UN危险货物编号1219 [11] 

自古以来,人们就知道氨的气味。18世纪,著名化学家约瑟夫·布莱克(苏格兰)、彼得·沃尔夫(爱尔兰)、卡尔·威廉·舍勒(瑞典/德国)和约瑟夫·普里斯特利(英格兰)发现空气中的氮能被碳化钙固定而生成氰氨化钙,氰氨化钙与过热水蒸汽反应制的氨。1785年,法国化学家克劳德·路易斯·贝索莱测定了它的元素组成。 [8] 

由于氮气的化学性质很不活泼,以氮气和氢气为原料合成氨的工业化生产曾是一个较难的课题。1909年,德国化学家哈伯(E.Haber,1868一1934)经过反复的实验研究后发现,在500-600℃、17.5~20.0 MPa和锇为催化剂的条件下,反应后氨的含量可达到6%以上,具备了工业化生产的可能性。为了把哈伯合成氨的实验室方法转化为规模化的工业生产,德国工程师博施(C. Bosch,1874一1940)改进了哈伯首创的高压合成氨,找到了合适的氧化铁型催化剂,使合成氨生产工业化,称为"哈伯--博施法"。

1913年,一个年产量7000吨的合成氨工厂建成并投产,实现了合成氨的工业化生产。从此,合成氨成为化学工业中迅速发展的重要领域。由于合成氨工业生产的实现和相关研究对化学理论与技术发展的推动,哈伯和博施都获得了诺贝尔化学奖。合成氨是人类科学技术发展史上的一项重大成就,在很大程度上解决了地球上因粮食不足而导致的饥饿问题,是化学和技术对社会发展与进步的巨大贡献。 [7] 

2020年,全球氨生产能力为2.24亿吨。实际产量为187吨,在全球生产的化学品中排名第九。 [8] 

氮原子有5个价电子,其中有3个未成对,当它与氢原子化合时,每个氮原子可以和3个氢原子通过极性共价键结合成氨分子。

Ammonia作用

Ammonia作用

Ammonia作用

)和酸根离子组成的化合物。一般为无色晶体,易溶于水,是强电解质。从结构来看,

Ammonia作用

是等电子体。

的半径比

的大,而且接近于

Ammonia作用

,因此

具有+1价碱金属离子的性质,在晶体结构和溶解度方面非常相似,除高氯酸铵和酒石酸氢铵外大多数铵盐都溶于水。但由于

是由5个原子组成的,与一般碱金属离子性质也有所差别(如易分解性·,水解性,热稳定性差)。 [4] 

氨与硫酸:2NH3+H2SO4=(NH4)2SO4

氨与磷酸:3NH3+H3PO4=(NH4)3PO4

氨与乙酸::NH3+CH3COOH=CH3COONH4

碳酸氢铵不稳定受热分解:

Ammonia作用

氨分子中的N原子的氧化数为-3,为氮的最低氧化态,在一定条件下可以被氧化形成较高氧化数的物质,产物中以N2为主。如,在热的铂丝催化下与氧气反应、在纯氧中燃烧、用氯或溴处理,都可将其氧化:

Ammonia作用

Ammonia作用

Ammonia作用

Ammonia作用

Ammonia作用

另外,氨气还能将金属氧化物还原为金属单质,如在加热条件下氨气会与氧化铜发生反应: [4] 

Ammonia作用

加合反应(氨合反应):作为Lewis碱,氨以其分子中的孤对电子与许多金属离子(Lewis酸)作用形成氨配离子,如[Ag(NH3)2]+、[Cu(NH3)4]2+、[Cr(NH3)6]2+、[Co(NH3)6]3+和[Pt(NH3)4]2+等,使许多难溶化合物溶解。

Ammonia作用

Ammonia作用

Ammonia作用

Ammonia作用

Ammonia作用

Ammonia作用

Ammonia作用

另一方面,也可以看作以氨基、亚氨基取代其他化合物中的原子或基团生成的产物: [4] 

Ammonia作用

Ammonia作用

1.在电子工业中,高纯氨用于模集成电路减压或等离子体CVD,以生长二氧化硅膜锅炉给水pH值调节剂,氨用来中和给水中的碳酸,提高pH值,减缓给大规水中二氧化碳的腐蚀。也是锅炉停炉保护剂,对锅炉内有少量存水不能放出的锅炉也有较好的保护效果。

3.在食品工业中用作碱性剂、酵母养料、食用色素稀释剂、冻豆腐制造用剂和溶剂。也可用于可可粉及含糖可可粉、可可豆粉、可可液块和可可油饼,食用酪蛋白酸盐的加工,用量按GMP。

4.在化工、科研等领域用作标准气、配制标准混合气、物性测定、硅或氧化硅的氮化等。在无机化学工业中用于铵盐、硝酸、氰化氢、肼、羟胺、硫胺、硝胺、磷胺、尿素等的制造。在有机化学工业中可将液氨与烷基氯或醇反应制备烷基胺,如1,2-二氯乙烷反应制取乙二胺,与己二腈反应制取己二胺,与丙烯反应制取丙烯腈等。其他还可用于吗啉、哌嗪、乌洛托品、皮考啉,2-甲基-5-乙烯基吡啶等的制造和用作冷冻剂等,氨还可以作为生物燃料来提供能源。 [6] 

5.用于制造氨水和液氨,氨水的用途非常广泛,如,可以检验HCl等气体的存在,与铝盐溶液反应制氢氧化铝。配制银氨溶液检验有机物分子中醛基的存在等。液氨可用于生产硝酸、尿素和其他化学肥料,还可用作医药和农药的原料。在国防工业中,用于制造火箭、导弹的推进剂。可用作有机化工产品的氨化原料,因为液氨在气化后转变为氨气,能吸收大量的热,被誉为“冷冻剂”,同时液氨具有一定的杀菌作用,所以在家禽养殖业中,被用于杀菌和降温制冷作用。液氨还可用于纺织品的丝光整理等。

如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。

如果眼睛接触或眼睛有刺激感,应用大量清水或生理盐水冲洗20 min以上。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。

对接触的皮肤和头发用大量清水冲洗15 min以上。冲洗皮肤和头发时要注意保护眼睛 [3]  。

应立即将患者转移出污染区,至空气新鲜处,对病人进行复苏三步法(气道、呼吸、循环)。

呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气。

如果接触浓度≥500 ppm,并出现眼刺激、肺水肿的症状,应立即就医。

对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。

如皮肤接触氨,会引起化学烧伤,可按热烧伤处理:适当补液,给止痛剂,维持体温,用消毒垫或清洁床单覆盖伤面。如果皮肤接触高压液氨,要注意冻伤。

氨对人体生理的影响氨无色具有强烈的刺激臭味,对人体有较大的毒性。氨气慢性中毒会引起慢性气管炎、肺气肿等呼吸系统病,急性氨中毒反映在咳嗽不止、憋气等。

撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。

疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。

向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。

禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增强通风。场所内禁止吸烟和明火。在保证安全的情况下,要堵漏或翻转泄漏的容器以避免液氨漏出。要喷雾状水,以抑制蒸气或改变蒸气云的流向,但禁止用水直接冲击泄漏的液氨或泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。禁止进入氨气可能汇集的受限空间。清洗以后,在储存和再使用前要将所有的保护性服装和设备清洗消毒 [3]  。

在贮存及运输使用过程中,如发生火灾应采取以下措施:

(1)报警:迅速向当地119消防、政府报警。报警内容应包括:事故单位、事故发生的时间、地点、化学品名称、危险程度、有无人员伤亡以及报警人姓名、电话。

(2)隔离、疏散、转移遇险人员到安全区域,建立500 m左右警戒区,并在通往事故现场的主要干道上实行交通管制,除消防及应急处理人员外,其他人员禁止进入警戒区,并迅速撤离无关人员。

(3)消防人员进入火场前,应穿着防化服,佩戴正压式呼吸器。氨气易穿透衣物,且易溶于水,消防人员要注意对人体排汗量大的部位,如生殖器官、腋下、肛门等部位的防护。

(4)小火灾时用干粉或CO2灭火器,大火灾时用水幕、雾状水或常规泡沫。

(5)储罐火灾时,尽可能远距离灭火或使用遥控水枪或水炮扑救。

(6)切勿直接对泄漏口或安全阀门喷水,防止产生冻结。

(7)安全阀发出声响或变色时应尽快撤离,切勿在储罐两端停留 [3]  。

(2)工作时应选用耐腐蚀的工作服、防碱手套、眼镜、胶鞋、防毒口罩,防毒口罩应定期检查,以防失效。

(3)在使用氨水作业时,应随身备有清水,以防万一;在氨水运输过程中,应随身备有3%硼酸液,以备急救冲洗;配制一定浓度氨水时,应戴上风镜;使用氨水时,作业者应在上风处,防止氨气刺激面部;操作时要严禁用手揉擦眼睛,操作后洗净双手。

(5)配备良好的通风排气设施、合适的防爆、灭火装置。

(8)发生泄漏时,将泄漏钢瓶的渗口朝上,防止液态氨溢出。

(9)加强生产过程的密闭化和自动化,防止跑、冒、滴、漏。

(10)使用、运输和贮存时应注意安全,防止容器破裂和冒气。

氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。吸入是接触的主要途径,吸入氨气后的中毒表现主要有以下几个方面。

轻度吸入氨中毒表现有鼻炎、咽炎、喉痛、发音嘶哑。氨进入气管、支气管会引起咳嗽、咯痰、痰内有血。严重时可咯血及肺水肿,呼吸困难、咯白色或血性泡沫痰,双肺布满大、中水泡音。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。

急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。

急性轻度中毒:咽干、咽痛、声音嘶哑、咳嗽、咳痰,胸闷及轻度头痛,头晕、乏力,支气管炎和支气管周围炎。

急性中度中毒:上述症状加重,呼吸困难,有时痰中带血丝,轻度发绀,眼结膜充血明显,喉水肿,肺部有干湿性哕音。

急性重度中毒:剧咳,咯大量粉红色泡沫样痰,气急、心悸、呼吸困难,喉水肿进一步加重,明显发绀,或出现急性呼吸窘迫综合症、较重的气胸和纵隔气肿等。

严重吸入中毒:可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度的氨可直接影响肺毛细血管通透性而引起肺水肿,可诱发惊厥、抽搐、嗜睡、昏迷等意识障碍。个别病人吸入极浓的氨气可发生呼吸心跳停止。 [2] 

低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。急性轻度中毒:流泪、畏光、视物模糊、眼结膜充血。

皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。

高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。

LC50:4230 ppm(小鼠吸入,1 h);2000 ppm(大鼠吸入,4 h)。

大鼠,20 mg/m3,每天24 h,84 d,或每天5~6 h,7个月,出现神经系统功能紊乱。

微生物致突变性:大肠杆菌1500 ppm(3 h)。细胞遗传学分析:大鼠吸入19800 μg/m3(16周)。

LC50:>3.58 mg/L(24 h)(彩鲑,已受精的);>3.58 mg/L(24 h)(彩鲑,幼年的);0.068 mg/L(24 h)(彩鲑,85天的鱼苗);0.097 mg/L(24 h)(彩鲑,成年的);24 mg/L(48 h)(水蚤)。 [6] 

Ammonia作用

(白色固体)

以稀硫酸作为吸收液采集空气中的氨,使氨在吸收液中转化为铵离子,选用抑制型电导检测器,D ionex IonPac CS10阳离子分析柱,以HCl作为淋洗液,进样体积50 μl,通过测定吸收液中的铵离子来计算空气中氨的浓度.结果:对空气中氨气的采样效率大于98%,铵离子在1~100 mg/L范围内具有良好的线性(r=0.9990),方法精密度高(RSD5%),对铵离子的检出限为0.1 mg/L,最小采样体积为9.5 L;与国家标准方法纳氏试剂分光光度法(GB/T14668)比较,测定结果一致。 [5] 

联氨(NH2NH2)又称为肼,联氨是一种吸湿性很强、介电常数较高的无色液体,熔点为275 K,沸点为386.5 K。固态时由于氢键的形成·,两岸为联状多聚体。许多盐溶于液态联氨中,所得的溶液具有良好的导电性。联氨可以看作氨分子中的一个氢原子被氨基取代的衍生物。在联氨分子中的每个氮原子都以sp3不等性杂化形成σ键,每个氨上有一对孤对电子。过去一直认为由于氮原子上孤电子对之间的排斥作用,孤电子对应处于反位。最近从联氨分子具有较强的极性(μ=1.85 D)等方面考虑,认为联氨分子应该是顺式结构。 [4] 

氨有什么用?

从100多年前开始被于肥料和合成纤维制造等工业生产中,运输和储藏手段都很成熟,油轮和油罐车都可以进行安全运输。 但是,在现在的工艺中,作为原料的氢是天然气制造的,所以在的制造阶段中不可避免地会产生二氧化碳。 据藤村先生说,使用再生能源由来的无二氧化碳氢来合成氨的关键在于新开发的催化剂。

氨是什么意思?

(Ammonia,即阿摩尼亚),或称“气”,氮和氢的化合物,分子式为NH₃,一种无色气体,有强烈的刺激气味。 极易溶于水,常温常压下1体积水可溶解700倍体积,水溶液又称氨水。 降温加压可变成液体,液氨是一种制冷剂。 也是制造硝酸、化肥、炸药的重要原料。

氨溶液是什么?

氨水指气的水溶液,可写作NH3(aq)。 有强烈刺鼻气味,為具弱碱性的液体。 氨水中,气分子发生微弱水解生成氢氧根离子及铵根离子,舊式化學書本中常記作「NH4OH」或「NH3·H2O」,但「氢氧化铵」事实上并不存在,只是对水溶液中的离子的描述,并无法从溶液中分离出来。

氨的式量是多少?

化學式
NH3
摩爾質量
17.0306 g·mol⁻¹
外觀
具有非常刺鼻的氣味的無色氣體
氨- 維基百科,自由的百科全書zh.wikipedia.org › zh-mo › 氨null